Your browser doesn't support javascript.
loading
Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells.
Zeng, Rui; Yang, Yao; Feng, Xinran; Li, Huiqi; Gibbs, Lauryn M; DiSalvo, Francis J; Abruña, Héctor D.
Afiliación
  • Zeng R; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Yang Y; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Feng X; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Li H; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Gibbs LM; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • DiSalvo FJ; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Abruña HD; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Sci Adv ; 8(5): eabj1584, 2022 Feb 04.
Article en En | MEDLINE | ID: mdl-35108056
Hydrogen fuel cells have attracted growing attention for high-performance automotive power but are hindered by the scarcity of platinum (and other precious metals) used to catalyze the sluggish oxygen reduction reaction (ORR). We report on a family of nonprecious transition metal nitrides (TMNs) as ORR electrocatalysts in alkaline medium. The air-exposed nitrides spontaneously form a several-nanometer-thick oxide shell on the conductive nitride core, serving as a highly active catalyst architecture. The most active catalyst, carbon-supported cobalt nitride (Co3N/C), exhibited a half-wave potential of 0.862 V and achieved a record-high peak power density among reported nitride cathode catalysts of 700 mW cm-2 in alkaline membrane electrode assemblies. Operando x-ray absorption spectroscopy studies revealed that Co3N/C remains stable below 1.0 V but experiences irreversible oxidation at higher potentials. This work provides a comprehensive analysis of nonprecious TMNs as ORR electrocatalysts and will help inform future design of TMNs for alkaline fuel cells and other energy applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos