Your browser doesn't support javascript.
loading
MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification.
Perlman, Or; Farrar, Christian T; Heo, Hye-Young.
Afiliación
  • Perlman O; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
  • Farrar CT; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
  • Heo HY; Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
NMR Biomed ; 36(6): e4710, 2023 06.
Article en En | MEDLINE | ID: mdl-35141967
Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast mechanism, capable of providing molecular information at sufficient resolution and amplified sensitivity. However, it has not yet become a routinely employed clinical technique, due to a variety of confounding factors affecting its contrast-weighted image interpretation and the inherently long scan time. CEST MR fingerprinting (MRF) is a novel approach for addressing these challenges, allowing simultaneous quantitation of several proton exchange parameters using rapid acquisition schemes. Recently, a number of deep-learning algorithms have been developed to further boost the performance and speed of CEST and semi-solid macromolecule magnetization transfer (MT) MRF. This review article describes the fundamental theory behind semisolid MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning approaches for MRF image reconstruction and describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally, practical considerations are discussed, and future perspectives are given, accompanied by basic demonstration code and data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Imagen por Resonancia Magnética Tipo de estudio: Guideline Idioma: En Revista: NMR Biomed Asunto de la revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Imagen por Resonancia Magnética Tipo de estudio: Guideline Idioma: En Revista: NMR Biomed Asunto de la revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido