Your browser doesn't support javascript.
loading
Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II.
Lewis, Christine M; Flory, Justin D; Moore, Thomas A; Moore, Ana L; Rittmann, Bruce E; Vermaas, Wim F J; Torres, César I; Fromme, Petra.
Afiliación
  • Lewis CM; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Flory JD; Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.
  • Moore TA; Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States.
  • Moore AL; Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.
  • Rittmann BE; Engineering Center for Negative Carbon Emmisions, at Arizona State University, Tempe, Arizona 85281, United States.
  • Vermaas WFJ; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Torres CI; Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States.
  • Fromme P; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
J Am Chem Soc ; 144(7): 2933-2942, 2022 02 23.
Article en En | MEDLINE | ID: mdl-35157427
Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 µmol photons m-2 s-1, which yielded a delivery rate of 113 µmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Proteínas Bacterianas / Complejo de Proteína del Fotosistema I / Hidroquinonas Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Proteínas Bacterianas / Complejo de Proteína del Fotosistema I / Hidroquinonas Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos