Your browser doesn't support javascript.
loading
Visualizing protein breathing motions associated with aromatic ring flipping.
Mariño Pérez, Laura; Ielasi, Francesco S; Bessa, Luiza M; Maurin, Damien; Kragelj, Jaka; Blackledge, Martin; Salvi, Nicola; Bouvignies, Guillaume; Palencia, Andrés; Jensen, Malene Ringkjøbing.
Afiliación
  • Mariño Pérez L; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Ielasi FS; Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain.
  • Bessa LM; Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
  • Maurin D; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Kragelj J; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Blackledge M; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Salvi N; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
  • Bouvignies G; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Palencia A; Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
  • Jensen MR; Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
Nature ; 602(7898): 695-700, 2022 02.
Article en En | MEDLINE | ID: mdl-35173330
ABSTRACT
Aromatic residues cluster in the core of folded proteins, where they stabilize the structure through multiple interactions. Nuclear magnetic resonance (NMR) studies in the 1970s showed that aromatic side chains can undergo ring flips-that is, 180° rotations-despite their role in maintaining the protein fold1-3. It was suggested that large-scale 'breathing' motions of the surrounding protein environment would be necessary to accommodate these ring flipping events1. However, the structural details of these motions have remained unclear. Here we uncover the structural rearrangements that accompany ring flipping of a buried tyrosine residue in an SH3 domain. Using NMR, we show that the tyrosine side chain flips to a low-populated, minor state and, through a proteome-wide sequence analysis, we design mutants that stabilize this state, which allows us to capture its high-resolution structure by X-ray crystallography. A void volume is generated around the tyrosine ring during the structural transition between the major and minor state, and this allows fast flipping to take place. Our results provide structural insights into the protein breathing motions that are associated with ring flipping. More generally, our study has implications for protein design and structure prediction by showing how the local protein environment influences amino acid side chain conformations and vice versa.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tirosina / Proteínas Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tirosina / Proteínas Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Francia