Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN.
ISA Trans
; 128(Pt B): 485-502, 2022 Sep.
Article
en En
| MEDLINE
| ID: mdl-35177261
Due to the structure of rolling bearings and the complexity of the operating environment, collected vibration signals tend to show strong non-stationary and time-varying characteristics. Extracting useful fault feature information from actual bearing vibration signals and identifying bearing faults is challenging. In this paper, an innovative optimized adaptive deep belief network (SADBN) is proposed to address the problem of rolling bearing fault identification. The DBN is pre-trained by the minimum batch stochastic gradient descent. Then, a back propagation neural network and conjugate gradient descent are used to supervise and fine-tune the entire DBN model, which effectively improve the classification accuracy of the DBN. The salp swarm algorithm, an intelligent optimization method, is used to optimize the DBN. Then, the experience of deep learning network structure is summarized. Finally, a series of simulations based on the experimental data verify the effectiveness of the proposed method.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
ISA Trans
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos