Your browser doesn't support javascript.
loading
Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN.
Gao, Shuzhi; Xu, Lintao; Zhang, Yimin; Pei, Zhiming.
Afiliación
  • Gao S; Equipment Reliability Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Xu L; College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Zhang Y; Equipment Reliability Institute, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address: zhangyimin_126163@126.com.
  • Pei Z; College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
ISA Trans ; 128(Pt B): 485-502, 2022 Sep.
Article en En | MEDLINE | ID: mdl-35177261
Due to the structure of rolling bearings and the complexity of the operating environment, collected vibration signals tend to show strong non-stationary and time-varying characteristics. Extracting useful fault feature information from actual bearing vibration signals and identifying bearing faults is challenging. In this paper, an innovative optimized adaptive deep belief network (SADBN) is proposed to address the problem of rolling bearing fault identification. The DBN is pre-trained by the minimum batch stochastic gradient descent. Then, a back propagation neural network and conjugate gradient descent are used to supervise and fine-tune the entire DBN model, which effectively improve the classification accuracy of the DBN. The salp swarm algorithm, an intelligent optimization method, is used to optimize the DBN. Then, the experience of deep learning network structure is summarized. Finally, a series of simulations based on the experimental data verify the effectiveness of the proposed method.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: ISA Trans Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: ISA Trans Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos