Simultaneous biodegradation of dimethyl sulfide and 1-propanethiol by Pseudomonas putida S-1 and Alcaligenes sp. SY1: "Lag" cause, reduction, and kinetics exploration.
Environ Sci Pollut Res Int
; 29(32): 48638-48647, 2022 Jul.
Article
en En
| MEDLINE
| ID: mdl-35195861
Simultaneous biodegradation of malodorous 1-propanethiol (PT) and dimethyl sulfide (DMS) by Pseudomonas putida S-1 and Alcaligenes sp. SY1 was investigated and the interactions implicated were explored. Results showed that PT was completely degraded in 33 h, while a lag of 10 h was observed for DMS degradation alone, and the lag was even extended to 81 h in the binary mixture. Mechanism analysis found that the lag was mainly attributed to the exposure of DMS degrader (Alcaligenes sp. SY1), rather than PT metabolites and PT degrader. The exposure time and PT concentration also influenced the lag duration much. Citric acid could effectively reduce the lag. Pseudo-first-order model was proved suitable for the description of PT degradation, revealing that PT degradation could be enhanced in presence of DMS with a concentration of < 50 mg L-1. A modified Gompertz model, incorporated the lag phase, was developed for the description of DMS degradation in the mixture, revealing that DMS degradation depended on the initial PT concentration, and when the lag was not considered, PT with low-concentration could promote DMS biodegradation, while a higher concentration (> 20 mg L-1) cast negative effect.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Pseudomonas putida
/
Alcaligenes
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania