Your browser doesn't support javascript.
loading
Analysis of an incomplete binary outcome dichotomized from an underlying continuous variable in clinical trials.
Ma, Chenchen; Shen, Xin; Qu, Yongming; Du, Yu.
Afiliación
  • Ma C; Statistics, Data and Analytics, Eli Lilly and Company, Indianapolis, Indiana, USA.
  • Shen X; SAS Programming, Brightech International, Somerset, New Jersey, USA.
  • Qu Y; Statistics, Data and Analytics, Eli Lilly and Company, Indianapolis, Indiana, USA.
  • Du Y; Statistics, Data and Analytics, Eli Lilly and Company, Indianapolis, Indiana, USA.
Pharm Stat ; 21(5): 907-918, 2022 09.
Article en En | MEDLINE | ID: mdl-35277928
In many clinical trials, outcomes of interest are binary-valued. It is not uncommon that a binary-valued outcome is dichotomized from a continuous outcome at a threshold of clinical interest. To analyze such data, common approaches include (a) fitting a generalized linear mixed model (GLMM) to the dichotomized longitudinal binary outcome; and (b) the multiple imputation (MI) based method: imputing missing values in the continuous outcome, dichotomizing it into a binary outcome, and then fitting a generalized linear model to the "complete" data. We conducted comprehensive simulation studies to compare the performance of the GLMM versus the MI-based method for estimating the risk difference and the logarithm of odds ratio between two treatment arms at the end of study. In those simulation studies, we considered a range of multivariate distribution options for the continuous outcome (including a multivariate normal distribution, a multivariate t-distribution, a multivariate log-normal distribution, and the empirical distribution from a real clinical trial data) to evaluate the robustness of the estimators to various data-generating models. Simulation results demonstrate that both methods work well under those considered distribution options, but the MI-based method is more efficient with smaller mean squared errors compared to the GLMM. We further applied both the GLMM and the MI-based method to 29 phase 3 diabetes clinical trials, and found that the MI-based method generally led to smaller variance estimates compared to the GLMM.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación Estadística de Datos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Pharm Stat Asunto de la revista: FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación Estadística de Datos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Pharm Stat Asunto de la revista: FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido