Your browser doesn't support javascript.
loading
Increasing the Stability of Metal-Organic Frameworks by Coating with Poly(tetrafluoroethylene).
Huang, Yan-Li; Ping, Lin-Jie; Wu, Jie; Li, Yan Yan; Zhou, Xiao-Ping.
Afiliación
  • Huang YL; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China.
  • Ping LJ; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China.
  • Wu J; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China.
  • Li YY; Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China.
  • Zhou XP; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China.
Inorg Chem ; 61(12): 5092-5098, 2022 Mar 28.
Article en En | MEDLINE | ID: mdl-35289170
ABSTRACT
When compared to industrially stable zeolites, the instability of metal-organic frameworks (MOFs) has been denounced by researchers. Boosting the stability of existing MOFs is highly important for practical applications. In this report, we develop a new strategy to prepare MOFs/poly(tetrafluoroethylene) (PTFE) composites, which can highly improve the chemical, pressure, and photostabilities of zeolitic imidazolate framework (ZIF)-8. Composite materials were prepared by a physical blending of ZIF-8 and PTFE emulsion with different ratios and annealing at 370 °C. Transmission electron microscopy (TEM) studies reveal that the nanoparticles of ZIF-8 are coated by PTFE to form the composite materials. Upon mixing with 20 or 50 wt % PTFE, the ZIF-8/PTFE materials show a superhydrophobic property with water contact angles of around 156°. Pristine ZIF-8 is not stable in water with stirring under acidic, basic, and irradiation conditions, while the ZIF-8/PTFE materials are stable under the same conditions. The ZIF-8/PTFE materials can also maintain their crystalline structure after being compressed with a 10 MPa pressure, while pristine ZIF-8 changes to an amorphous solid after the same pressure treatment. Using water as a solvent, ZIF-8/PTFE can be used as a highly efficient and recyclable catalyst for Knoevenagel reaction at room temperature. The successful preparation of stable ZIF-8/PTFE composite materials provides a useful method to enhance the chemical, pressure, and photostabilities of MOFs.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2022 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2022 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA