Your browser doesn't support javascript.
loading
Impact of Clinical and Genomic Factors on COVID-19 Disease Severity.
Dey, Sanjoy; Bose, Aritra; Saha, Subrata; Chakraborty, Prithwish; Ghalwash, Mohamed; Guzm X E N-Sáenz, Aldo; Utro, Filippo; Ng, Kenney; Hu, Jianying; Parida, Laxmi; Sow, Daby.
Afiliación
  • Dey S; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
  • Bose A; Computational Genomics, IBM Research, Yorktown Heights, NY, USA.
  • Saha S; Columbia University Irving Medical Center, Columbia University, NY, USA.
  • Chakraborty P; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
  • Ghalwash M; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
  • Guzm X E N-Sáenz A; Computational Genomics, IBM Research, Yorktown Heights, NY, USA.
  • Utro F; Computational Genomics, IBM Research, Yorktown Heights, NY, USA.
  • Ng K; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
  • Hu J; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
  • Parida L; Computational Genomics, IBM Research, Yorktown Heights, NY, USA.
  • Sow D; Center for Computational Health, IBM Research, Yorktown Heights, NY, USA.
AMIA Annu Symp Proc ; 2021: 378-387, 2021.
Article en En | MEDLINE | ID: mdl-35308982
To date, there have been 180 million confirmed cases of COVID-19, with more than 3.8 million deaths, reported to WHO worldwide. In this paper we address the problem of understanding the host genome's influence, in concert with clinical variables, on the severity of COVID-19 manifestation in the patient. Leveraging positive-unlabeled machine learning algorithms coupled with RubricOE, a state-of-the-art genomic analysis framework, on UK BioBank data we extract novel insights on the complex interplay. The algorithm is also sensitive enough to detect the changing influence of the emergent B.1.1.7 SARS-CoV-2 (alpha) variant on disease severity, and, changing treatment protocols. The genomic component also implicates biological pathways that can help in understanding the disease etiology. Our work demonstrates that it is possible to build a robust and sensitive model despite significant bias, noise and incompleteness in both clinical and genomic data by a careful interleaving of clinical and genomic methodologies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: SARS-CoV-2 / COVID-19 Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: SARS-CoV-2 / COVID-19 Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos