Your browser doesn't support javascript.
loading
The long road to calibrated prediction uncertainty in computational chemistry.
Pernot, Pascal.
Afiliación
  • Pernot P; Institut de Chimie Physique, UMR8000 CNRS, Université Paris-Saclay, 91405 Orsay, France.
J Chem Phys ; 156(11): 114109, 2022 Mar 21.
Article en En | MEDLINE | ID: mdl-35317574
Uncertainty quantification (UQ) in computational chemistry (CC) is still in its infancy. Very few CC methods are designed to provide a confidence level on their predictions, and most users still rely improperly on the mean absolute error as an accuracy metric. The development of reliable UQ methods is essential, notably for CC to be used confidently in industrial processes. A review of the CC-UQ literature shows that there is no common standard procedure to report or validate prediction uncertainty. I consider here analysis tools using concepts (calibration and sharpness) developed in meteorology and machine learning for the validation of probabilistic forecasters. These tools are adapted to CC-UQ and applied to datasets of prediction uncertainties provided by composite methods, Bayesian ensembles methods, and machine learning and a posteriori statistical methods.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos