Your browser doesn't support javascript.
loading
Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric.
Ma, Yuan-Xiao; Lai, Pui-To; Tang, Wing-Man.
Afiliación
  • Ma YX; School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China.
  • Lai PT; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong 999077, China.
  • Tang WM; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong 999077, China.
Materials (Basel) ; 15(6)2022 Mar 18.
Article en En | MEDLINE | ID: mdl-35329704
When processed at a low temperature of 200 °C, organic thin-film transistors (OTFTs) with pentacene channel adopting high-k Neodymium-Titanium oxynitride mixtures (NdTiON) with various Ti contents as gate dielectrics are fabricated. The Ti content in the NdTiON is varied by co-sputtering a Ti target at 0 W, 10 W, 20 W and 30 W, respectively, while fixing the sputtering power of an Nd target at 45 W. High-performance OTFT is obtained for the 20 W-sputtered Ti, including a small threshold voltage of -0.71 V and high carrier mobility of 1.70 cm2/V·s. The mobility improvement for the optimal Ti content can be attributed to smoother dielectric surface and resultant larger overlying pentacene grains as reflected by Atomic Force Microscopy measurements. Moreover, this sample with the optimal Ti content shows much higher mobility than its counterpart processed at a higher temperature of 400 °C (0.8 cm2/V·s) because it has a thinner gate-dielectric/gate-electrode interlayer for stronger screening on the remote phonon scattering by the gate electrode. In addition, a high dielectric constant of around 10 is obtained for the NdTiON gate dielectric that contributes to a threshold voltage smaller than 1 V for the pentacene OTFT, implying the high potential of the Nd-Ti oxynitride in future high-performance organic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza