Your browser doesn't support javascript.
loading
Automated multilabel diagnosis on electrocardiographic images and signals.
Sangha, Veer; Mortazavi, Bobak J; Haimovich, Adrian D; Ribeiro, Antônio H; Brandt, Cynthia A; Jacoby, Daniel L; Schulz, Wade L; Krumholz, Harlan M; Ribeiro, Antonio Luiz P; Khera, Rohan.
Afiliación
  • Sangha V; Department of Computer Science, Yale University, New Haven, CT, USA.
  • Mortazavi BJ; Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA.
  • Haimovich AD; Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA.
  • Ribeiro AH; Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA.
  • Brandt CA; Department of Information Technology, Uppsala University, Uppsala, Sweden.
  • Jacoby DL; Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA.
  • Schulz WL; VA Connecticut Healthcare System, West Haven, CT, USA.
  • Krumholz HM; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Ribeiro ALP; Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA.
  • Khera R; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
Nat Commun ; 13(1): 1583, 2022 03 24.
Article en En | MEDLINE | ID: mdl-35332137
The application of artificial intelligence (AI) for automated diagnosis of electrocardiograms (ECGs) can improve care in remote settings but is limited by the reliance on infrequently available signal-based data. We report the development of a multilabel automated diagnosis model for electrocardiographic images, more suitable for broader use. A total of 2,228,236 12-lead ECGs signals from 811 municipalities in Brazil are transformed to ECG images in varying lead conformations to train a convolutional neural network (CNN) identifying 6 physician-defined clinical labels spanning rhythm and conduction disorders, and a hidden label for gender. The image-based model performs well on a distinct test set validated by at least two cardiologists (average AUROC 0.99, AUPRC 0.86), an external validation set of 21,785 ECGs from Germany (average AUROC 0.97, AUPRC 0.73), and printed ECGs, with performance superior to signal-based models, and learning clinically relevant cues based on Grad-CAM. The model allows the application of AI to ECGs across broad settings.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Electrocardiografía Tipo de estudio: Diagnostic_studies País/Región como asunto: America do sul / Brasil / Europa Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Electrocardiografía Tipo de estudio: Diagnostic_studies País/Región como asunto: America do sul / Brasil / Europa Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido