Your browser doesn't support javascript.
loading
Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C.
Moutoussamy, Emmanuel E; Khan, Hanif M; Roberts, Mary F; Gershenson, Anne; Chipot, Christophe; Reuter, Nathalie.
Afiliación
  • Moutoussamy EE; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.
  • Khan HM; Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
  • Roberts MF; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.
  • Gershenson A; Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
  • Chipot C; Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.
  • Reuter N; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
J Chem Inf Model ; 62(24): 6602-6613, 2022 12 26.
Article en En | MEDLINE | ID: mdl-35343689
ABSTRACT
Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-µs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfolipasas de Tipo C / Membrana Dobles de Lípidos Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Noruega

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfolipasas de Tipo C / Membrana Dobles de Lípidos Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Noruega