Mining of Single-Cell Signaling Time-Series for Dynamic Phenotypes with Clustering.
Methods Mol Biol
; 2488: 183-206, 2022.
Article
en En
| MEDLINE
| ID: mdl-35347690
Fluorescent live cell time-lapse microscopy is steadily contributing to our better understanding of the relationship between cell signaling and fate. However, large volumes of time-series data generated in these experiments and the heterogenous nature of signaling responses due to cell-cell variability hinder the exploration of such datasets. The population averages insufficiently describe the dynamics, yet finding prototypic dynamic patterns that relate to different cell fates is difficult when mining thousands of time-series. Here we demonstrate a protocol where we identify such dynamic phenotypes in a population of PC-12 cells that respond to a range of sustained growth factor perturbations. We use Time-Course Inspector, a free R/Shiny web application to explore and cluster single-cell time-series.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
Transducción de Señal
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2022
Tipo del documento:
Article
País de afiliación:
Suiza
Pais de publicación:
Estados Unidos