Your browser doesn't support javascript.
loading
Pretreatment of hydroethanolic extract of Dillenia indica L. attenuates oleic acid induced NAFLD in HepG2 cells via modulating SIRT-1/p-LKB-1/AMPK, HMGCR & PPAR-α signaling pathways.
Poornima, M S; Sindhu, G; Billu, Abraham; Sruthi, C R; Nisha, P; Gogoi, Pinku; Baishya, Gakul; G Raghu, K.
Afiliación
  • Poornima MS; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
  • Sindhu G; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
  • Billu A; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
  • Sruthi CR; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
  • Nisha P; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
  • Gogoi P; Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
  • Baishya G; Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
  • G Raghu K; Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic addre
J Ethnopharmacol ; 292: 115237, 2022 Jun 28.
Article en En | MEDLINE | ID: mdl-35351574
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia indica L. is an edible plant from the Dilleniaceae family present in the forest of India and other Asian countries. Different parts of this plant are being used in the traditional system of medicines for various diseases like diabetes, indigestion, asthma, jaundice, and rheumatic pain by various rural communities. This plant is very common among Khamptis traditional healers, the rural community of the Dhemaji district of Assam, ethnic communities of Dibru-Saikhowa Biosphere Reserve of Northeast, India for various medicinal uses. It is observed as a 'vat' suppressant and 'pitta' boosting medicine in Ayurveda. AIM OF THE STUDY The aim of this research was to evaluate the effect of hydroethanolic extract of Dillenia indica leaf (DI-HET) against non-alcoholic fatty liver disease (NAFLD) as it is reported effective against jaundice in traditional medicine. We are also planning to see the various molecular mechanisms responsible for its effect if it is efficacious. STUDY DESIGN/

METHOD:

An in vitro model for NAFLD was employed in this study. For this HepG2 cells were incubated with 100 µM of oleic acid (OA) for 24 h. For evaluation of the effect of DI-HET, the extracts (5 or 10 µg/mL) were pretreated to the OA group. Fenofibrate was the positive control. Various parameters relevant to lipogenesis and ß-oxidation of fatty acids like intracellular lipid accumulation, reactive oxygen species (ROS), mitochondrial stress, and key proteins were studied.

RESULTS:

DI-HET significantly reduced the intracellular lipid accumulation in OA treated cells. And also substantially decreased the expression of lipogenic proteins and increased ß-oxidation in the OA group. OA induced ROS generation was found to reduce with DI-HET treatment. Western blot analysis showed that the expression of LXR-α, SREBP-1C, SREBP-2, HMGCR, FAS, CD-36, and ACOX-1 were downregulated while that of SIRT-1, p-LKB-, p-AMPK, p-ACC, CPT-1, and PPAR-α upregulated in DI-HET treatment. LCMS/MS analysis showed the presence of polyphenols like naringenin, catechin, epicatechin, shikimic acid, syringic acid, vanillic acid, and kaempferol.

CONCLUSION:

These results suggest that DI-HET is effective against NAFLD by activation of the SIRT-1/p-LKB-1/AMPK signaling pathway via polyphenols present in the extract.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sirtuinas / Dilleniaceae / Enfermedad del Hígado Graso no Alcohólico Límite: Humans Idioma: En Revista: J Ethnopharmacol Año: 2022 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sirtuinas / Dilleniaceae / Enfermedad del Hígado Graso no Alcohólico Límite: Humans Idioma: En Revista: J Ethnopharmacol Año: 2022 Tipo del documento: Article País de afiliación: India
...