Your browser doesn't support javascript.
loading
Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates.
Nguyen, Trang T H; Zakem, Emily J; Ebrahimi, Ali; Schwartzman, Julia; Caglar, Tolga; Amarnath, Kapil; Alcolombri, Uria; Peaudecerf, François J; Hwa, Terence; Stocker, Roman; Cordero, Otto X; Levine, Naomi M.
Afiliación
  • Nguyen TTH; Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
  • Zakem EJ; Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
  • Ebrahimi A; Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Schwartzman J; Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Caglar T; Department of Physics, University of California at San Diego, La Jolla, CA, 92093, USA.
  • Amarnath K; Department of Physics, University of California at San Diego, La Jolla, CA, 92093, USA.
  • Alcolombri U; Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zurich, Switzerland.
  • Peaudecerf FJ; Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zurich, Switzerland.
  • Hwa T; Department of Physics, University of California at San Diego, La Jolla, CA, 92093, USA.
  • Stocker R; Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zurich, Switzerland.
  • Cordero OX; Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Levine NM; Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA. n.levine@usc.edu.
Nat Commun ; 13(1): 1657, 2022 03 29.
Article en En | MEDLINE | ID: mdl-35351873
Sinking particulate organic carbon out of the surface ocean sequesters carbon on decadal to millennial timescales. Predicting the particulate carbon flux is therefore critical for understanding both global carbon cycling and the future climate. Microbes play a crucial role in particulate organic carbon degradation, but the impact of depth-dependent microbial dynamics on ocean-scale particulate carbon fluxes is poorly understood. Here we scale-up essential features of particle-associated microbial dynamics to understand the large-scale vertical carbon flux in the ocean. Our model provides mechanistic insight into the microbial contribution to the particulate organic carbon flux profile. We show that the enhanced transfer of carbon to depth can result from populations struggling to establish colonies on sinking particles due to diffusive nutrient loss, cell detachment, and mortality. These dynamics are controlled by the interaction between multiple biotic and abiotic factors. Accurately capturing particle-microbe interactions is essential for predicting variability in large-scale carbon cycling.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Agua de Mar / Ciclo del Carbono Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Agua de Mar / Ciclo del Carbono Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido