Your browser doesn't support javascript.
loading
Uptake and distribution of difenoconazole in rice plants under different culture patterns.
Cao, Junli; Liu, Xingang; Wu, Xiaohu; Xu, Jun; Dong, Fengshou; Zheng, Yongquan.
Afiliación
  • Cao J; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's
  • Liu X; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, People's Republic of China.
  • Wu X; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's
  • Xu J; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's
  • Dong F; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's
  • Zheng Y; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's
Article en En | MEDLINE | ID: mdl-35357266
The effects of spraying and root irrigation on the uptake and transport of the fungicide difenoconazole under hydroponic and soil cultivation were investigated. Rice was used as the crop for a short-term exposure experiment. A modified QuEChERS pre-treatment combined with ultra-high-performance liquid chromatography-tandem mass spectrometry was used to extract and detect difenoconazole from rice plants, water and soil. The recoveries of difenoconazole were in the range of 72.8-110.5%, with a relative standard deviation of 2.4-19.5% for all the samples when spiked with 0.01, 0.1 and 1 mg kg-1 of difenoconazole, respectively. The limit of quantitation (LOQ) of this method was 0.01 mg kg-1. The exposure results showed that difenoconazole could be absorbed by rice plants and transmitted to different parts of rice plants in all the treatments. In the hydroponic experiment, difenoconazole was mainly distributed in the roots of rice regardless of whether irrigation or spraying was used. For rice cultivated in soil, difenoconazole mainly accumulated in leaves after the root irrigation treatment, whereas after the spraying treatment, the rice roots were the main site of accumulation of difenoconazole. This experiment extends our knowledge of the influence of the cultivation system and application mode on the translocation of difenoconazole in rice plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo / Dioxolanos Idioma: En Revista: Food Addit Contam Part A Chem Anal Control Expo Risk Assess Asunto de la revista: CIENCIAS DA NUTRICAO Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo / Dioxolanos Idioma: En Revista: Food Addit Contam Part A Chem Anal Control Expo Risk Assess Asunto de la revista: CIENCIAS DA NUTRICAO Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido