Your browser doesn't support javascript.
loading
Uncovering the hydride ion diffusion pathway in barium hydride via neutron spectroscopy.
Novak, Eric; Daemen, Luke; Ramirez-Cuesta, Anibal Javier; Cheng, Yongqiang; Smith, Robert; Egami, Takeshi; Jalarvo, Niina.
Afiliación
  • Novak E; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA. novakec@ornl.gov.
  • Daemen L; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. novakec@ornl.gov.
  • Ramirez-Cuesta AJ; Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. novakec@ornl.gov.
  • Cheng Y; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Smith R; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Egami T; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Jalarvo N; Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Sci Rep ; 12(1): 6194, 2022 Apr 13.
Article en En | MEDLINE | ID: mdl-35418572
ABSTRACT
Solid state materials possessing the ability for fast ionic diffusion of hydrogen have immense appeal for a wide range of energy-related applications. Ionic hydrogen transport research is dominated by proton conductors, but recently a few examples of hydride ion conductors have been observed as well. Barium hydride, BaH2, undergoes a structural phase transition around 775 K that leads to an order of magnitude increase in the ionic conductivity. This material provides a prototypical system to understand hydride ion diffusion and how the altered structure produced by the phase transition can have an enormous impact on the diffusion. We employ quasielastic and inelastic neutron scattering to probe the atomic scale diffusion mechanism and vibrational dynamics of hydride ions in both the low- and high-temperature phases. Jump lengths, residence times, diffusion coefficients, and activation energies are extracted and compared to the crystal structure to uncover the diffusion pathways. We find that the hydrogen jump distances, residence times, and energy barriers become reduced following the phase transition, allowing for the efficient conduction of hydride ions through a series of hydrogen jumps of length L = 3.1 Å.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos