Your browser doesn't support javascript.
loading
Application of Machine Learning Solutions to Optimize Parameter Prediction to Enhance Automatic NMR Metabolite Profiling.
Cañueto, Daniel; Salek, Reza M; Bulló, Mònica; Correig, Xavier; Cañellas, Nicolau.
Afiliación
  • Cañueto D; Department of Electronic Engineering and Automation, University Rovira i Virgili, 43007 Tarragona, Spain.
  • Salek RM; Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany.
  • Bulló M; Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), 43201 Reus, Spain.
  • Correig X; Institut d'Investigació Sanitaria Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain.
  • Cañellas N; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
Metabolites ; 12(4)2022 Mar 24.
Article en En | MEDLINE | ID: mdl-35448470
The quality of automatic metabolite profiling in NMR datasets from complex matrices can be affected by the numerous sources of variability. These sources, as well as the presence of multiple low-intensity signals, cause uncertainty in the metabolite signal parameters. Lineshape fitting approaches often produce suboptimal resolutions to adapt them in a complex spectrum lineshape. As a result, the use of software tools for automatic profiling tends to be restricted to specific biological matrices and/or sample preparation protocols to obtain reliable results. However, the analysis and modelling of the signal parameters collected during initial iteration can be further optimized to reduce uncertainty by generating narrow and accurate predictions of the expected signal parameters. In this study, we show that, thanks to the predictions generated, better profiling quality indicators can be outputted, and the performance of automatic profiling can be maximized. Our proposed workflow can learn and model the sample properties; therefore, restrictions in the biological matrix, or sample preparation protocol, and limitations of lineshape fitting approaches can be overcome.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Metabolites Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Metabolites Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza