Your browser doesn't support javascript.
loading
Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated ß-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus L.) Fruit.
Obel, Hesbon Ochieng; Cheng, Chunyan; Li, Ying; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Lou, Qunfeng; Yu, Xiaqing; Yang, Zhengan; Ogweno, Joshua Otieno; Chen, Jinfeng.
Afiliación
  • Obel HO; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Cheng C; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Li Y; Nanjing Vegetable Science Research Institute, Nanjing 210042, China.
  • Tian Z; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Njogu MK; Department of Plant Science, Chuka University, Chuka 60400, Kenya.
  • Li J; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Lou Q; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Yu X; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
  • Yang Z; College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650500, China.
  • Ogweno JO; Department of Crops, Horticulture and Soil Science, Faculty of Agriculture, Egerton University, Njoro Campus, Nakuru City 20115, Kenya.
  • Chen J; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing 210095, China.
Genes (Basel) ; 13(4)2022 04 08.
Article en En | MEDLINE | ID: mdl-35456464
Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of ß-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, ß-carotene hydroxylase-1), thus suggesting its involvement in ß-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4,5,7,9,11, 13,15,17 and 22) showed a significant positive correlation with ß-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cucumis sativus Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cucumis sativus Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza