Your browser doesn't support javascript.
loading
Poly(cyclosilane) Connectivity Tunes Optical Absorbance.
Fang, Fan; Jiang, Qifeng; Klausen, Rebekka S.
Afiliación
  • Fang F; Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland 21218, United States.
  • Jiang Q; Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland 21218, United States.
  • Klausen RS; Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland 21218, United States.
J Am Chem Soc ; 144(17): 7834-7843, 2022 05 04.
Article en En | MEDLINE | ID: mdl-35467855
ABSTRACT
We report herein the influence of skeletal connectivity on the conformation-dependent optical properties of cyclosilane homo- and copolymers. 1,3-Linked cyclosilanes were bathochromically shifted by 20 nm in solution relative to 1,4-linked cyclosilanes, an effect reproduced by quantum chemical calculations on oligomeric model systems. Polysilane optical properties are conformation-dependent, and 1,3-linked cyclosilanes were hypothesized to adopt a favorable conformation unavailable to 1,4-linked cyclosilanes constrained to an endocyclic gauche conformation. Copolymerization of the isomeric cyclosilanes 1,3Si6 and 1,4Si6 afforded linear statistical copolymers, as characterized by 1H and 29Si NMR spectroscopies. The distinct connectivity of each comonomer was found to give rise to tunable absorption spectra, where the position of the absorption band systematically increased with the increased corporation of 1,3Si6. Computational studies pointed to conformation-dependent changes in orbital symmetry in shifting the most intense transition from the low-energy highest occupied molecular orbital (HOMO) → lowest unoccupied molecular orbital (LUMO) transition to a higher-energy HOMO → LUMO + n transition. The results of these studies demonstrate for the first time the role of silicon skeletal connectivity in controlling conformation and optoelectronic properties and provide new insight into the structure-based design of solution-processable silicon-based polymeric materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos