Your browser doesn't support javascript.
loading
Revealing Capillarity in AFM Indentation of Cells by Nanodiamond-Based Nonlocal Deformation Sensing.
Cui, Yue; Leong, Weng-Hang; Liu, Chu-Feng; Xia, Kangwei; Feng, Xi; Gergely, Csilla; Liu, Ren-Bao; Li, Quan.
Afiliación
  • Cui Y; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Leong WH; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Liu CF; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Xia K; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Feng X; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Gergely C; Laboratoire Charles Coulomb, University of Montpellierr, CNRS, Montpellier, 34095, France.
  • Liu RB; Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
  • Li Q; Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
Nano Lett ; 22(10): 3889-3896, 2022 05 25.
Article en En | MEDLINE | ID: mdl-35507005
Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanodiamantes Límite: Humans Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanodiamantes Límite: Humans Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos