Your browser doesn't support javascript.
loading
A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition.
Rahimi, Mohammad Ghasem; Wang, Anqi; Ma, Guojun; Han, Ning; Chen, Yunfa.
Afiliación
  • Rahimi MG; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences P.O. Box 353 Beijing 100190 PR China nhan@ipe.ac.cn chenyf@ipe.ac.cn +86-10-62525716 +86-10-62558356 +86-10-82544896.
  • Wang A; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China.
  • Ma G; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences P.O. Box 353 Beijing 100190 PR China nhan@ipe.ac.cn chenyf@ipe.ac.cn +86-10-62525716 +86-10-62558356 +86-10-82544896.
  • Han N; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China.
  • Chen Y; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 PR China.
RSC Adv ; 10(67): 40916-40922, 2020 Nov 09.
Article en En | MEDLINE | ID: mdl-35519179
Nowadays, it is necessary and challenging to prepare monolithic catalysts, which are ready for use, preventing the tedious and complicated integration procedure of the powder materials onto a porous substrate. Herein, Cu2O nanoparticles are successfully synthesized onto a porous Cu foam in one pot via the surface oxidation, coordination and precipitation reactions in a NH4OH and HCl solution, and the optimum synthesis conditions are a NH3 : HCl ratio of 1 : 0.9, oxidation temperature of 80 °C and time of 18 h. The obtained Cu2O/Cu catalyst (mostly <100 nm) shows a highly active O3 decomposition performance with >98% and >80% conversion efficiency in dry and 90% relative humidity air for >10 h at an O3 concentration of 20 ppm and a gas hourly space velocity of 12 500 h-1. The high efficiency can be attributed to the porous Cu foam providing a large contact area, abundant crystal defects in the nanometer-sized Cu2O materials serving as the active sites, and also to the Schottky barrier formed in the Cu2O/Cu interface facilitating the electron transfer for O3 degradation. All these results show the potency of the easily fabricated monolithic Cu2O/Cu catalyst for the highly efficient O3 contaminant removal.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2020 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2020 Tipo del documento: Article Pais de publicación: Reino Unido