Your browser doesn't support javascript.
loading
Hydrothermal synthesis and characterization of novel yellow pigments based on V5+ doped BiPO4 with high near-infrared reflectance.
Ding, Cheng; Han, Aijun; Ye, Mingquan; Zhang, Yu; Yao, Lingyun; Yang, Jiling.
Afiliación
  • Ding C; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
  • Han A; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
  • Ye M; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
  • Zhang Y; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
  • Yao L; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
  • Yang J; School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China haj@njust.edu.cn +86-25-84438644.
RSC Adv ; 8(35): 19690-19700, 2018 May 25.
Article en En | MEDLINE | ID: mdl-35541020
ABSTRACT
In this study, a series of novel pigments based on V5+ doped BiPO4 have been prepared for the first time via a facile hydrothermal method and characterized using several analytical techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometry, the Commission International de l'Eclairage (CIE) L*a*b* color scales and thermogravimetry and differential thermal analysis (TG-DTA). The investigation demonstrated that the synthesized pigments of BiP1-x V x O4 (x = 0.00, 0.01, 0.05, 0.08, 0.10, 0.15) had a monazite-type phase structure and were about 0.25-2 µm in size. Meanwhile, the substitution of V5+ for P5+ in BiPO4 resulted in the band gap of the pigments varying from 3.657 to 3.244 eV and its mechanism was explained by charge-transfer and energy band theory, while the color changed from white to yellow. More importantly, the V5+ doped pigments possessed high NIR reflectance (>72%) and NIR solar reflectance (≥75.64%) in the range 700-2500 nm. Moreover, coatings colored with synthetic pigments have higher NIR solar reflectance (≥78.59%) than conventional pigments. Additionally, the pigments showed good thermal/chemical stabilities in high-temperature/acid/alkaline tests. In conclusion, the pigments have the potential to be applied as "cool pigments" to reduce energy consumption.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2018 Tipo del documento: Article