Your browser doesn't support javascript.
loading
In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma.
Gao, Cheng; Wang, Qingfu; Li, Junyan; Kwong, Cheryl H T; Wei, Jianwen; Xie, Beibei; Lu, Siyu; Lee, Simon M Y; Wang, Ruibing.
Afiliación
  • Gao C; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Wang Q; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China.
  • Li J; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Kwong CHT; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Wei J; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Xie B; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Lu S; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
  • Lee SMY; Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China.
  • Wang R; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
Sci Adv ; 8(19): eabn1805, 2022 05 13.
Article en En | MEDLINE | ID: mdl-35544569
ABSTRACT
Cell-based drug carriers are mostly prepared in vitro, which may negatively affect the physiological functions of cells, and induce possible immune rejections when applied to different individuals. In addition, the immunosuppressive tumor microenvironment limits immune cell-mediated delivery. Here, we report an in vivo strategy to construct cell-based nanomedicine carriers, where bacteria-mimetic gold nanoparticles (GNPs) are intravenously injected, selectively phagocytosed by phagocytic immune cells, and subsequently self-assemble into sizable intracellular aggregates via host-guest interactions. The intracellular aggregates minimize exocytosis of GNPs from immune cells and activate the photothermal property via plasmonic coupling effects. Phagocytic immune cells carry the intracellular GNP aggregates to melanoma tissue via inflammatory tropism. Moreover, an initial photothermal treatment (PTT) of the tumor induces tumor damage that subsequently provides positive feedback to recruit more immune cell-based carriers for enhanced targeting efficiency. The optimized secondary PTT notably improves antitumor immunotherapy, further strengthened by immune checkpoint blockade.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal / Melanoma / Neoplasias Límite: Humans Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal / Melanoma / Neoplasias Límite: Humans Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: China