Your browser doesn't support javascript.
loading
Materials synthesis at terapascal static pressures.
Dubrovinsky, Leonid; Khandarkhaeva, Saiana; Fedotenko, Timofey; Laniel, Dominique; Bykov, Maxim; Giacobbe, Carlotta; Lawrence Bright, Eleanor; Sedmak, Pavel; Chariton, Stella; Prakapenka, Vitali; Ponomareva, Alena V; Smirnova, Ekaterina A; Belov, Maxim P; Tasnádi, Ferenc; Shulumba, Nina; Trybel, Florian; Abrikosov, Igor A; Dubrovinskaia, Natalia.
Afiliación
  • Dubrovinsky L; Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany. Leonid.Dubrovinsky@uni-bayreuth.de.
  • Khandarkhaeva S; Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.
  • Fedotenko T; Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography University of Bayreuth, Bayreuth, Germany.
  • Laniel D; Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
  • Bykov M; Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography University of Bayreuth, Bayreuth, Germany.
  • Giacobbe C; Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany.
  • Lawrence Bright E; European Synchrotron Radiation Facility, Grenoble, France.
  • Sedmak P; European Synchrotron Radiation Facility, Grenoble, France.
  • Chariton S; European Synchrotron Radiation Facility, Grenoble, France.
  • Prakapenka V; Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA.
  • Ponomareva AV; Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA.
  • Smirnova EA; Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS", Moscow, Russia.
  • Belov MP; Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS", Moscow, Russia.
  • Tasnádi F; Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS", Moscow, Russia.
  • Shulumba N; Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
  • Trybel F; Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
  • Abrikosov IA; Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
  • Dubrovinskaia N; Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden. igor.abrikosov@liu.se.
Nature ; 605(7909): 274-278, 2022 05.
Article en En | MEDLINE | ID: mdl-35546194
ABSTRACT
Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions1,2. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell3, producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Alemania