Your browser doesn't support javascript.
loading
Chromosome-level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits.
Vining, Kelly J; Pandelova, Iovanna; Lange, Iris; Parrish, Amber N; Lefors, Andrew; Kronmiller, Brent; Liachko, Ivan; Kronenberg, Zev; Srividya, Narayanan; Lange, B Markus.
Afiliación
  • Vining KJ; Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
  • Pandelova I; Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
  • Lange I; M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
  • Parrish AN; M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
  • Lefors A; M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
  • Kronmiller B; Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA.
  • Liachko I; Phase Genomics, Seattle, WA 98109, USA.
  • Kronenberg Z; Pacific Biosciences, Menlo Park, CA 94025, USA.
  • Srividya N; M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
  • Lange BM; M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
G3 (Bethesda) ; 12(8)2022 07 29.
Article en En | MEDLINE | ID: mdl-35551385
ABSTRACT
Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites Volátiles / Verticillium / Mentha Idioma: En Revista: G3 (Bethesda) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceites Volátiles / Verticillium / Mentha Idioma: En Revista: G3 (Bethesda) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos