Your browser doesn't support javascript.
loading
Semantic fMRI neurofeedback: a multi-subject study at 3 tesla.
Ciarlo, Assunta; Russo, Andrea G; Ponticorvo, Sara; di Salle, Francesco; Lührs, Michael; Goebel, Rainer; Esposito, Fabrizio.
Afiliación
  • Ciarlo A; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.
  • Russo AG; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.
  • Ponticorvo S; Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania 'Luigi Vanvitelli', Naples, Italy.
  • di Salle F; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.
  • Lührs M; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.
  • Goebel R; Department of Diagnostic Imaging, University Hospital 'San Giovanni di Dio e Ruggi d'Aragona', Salerno, Italy.
  • Esposito F; Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands.
J Neural Eng ; 19(3)2022 05 30.
Article en En | MEDLINE | ID: mdl-35561669
ABSTRACT
Objective.Real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a non-invasive procedure allowing the self-regulation of brain functions via enhanced self-control of fMRI based neural activation. In semantic rt-fMRI-NF, an estimated relation between multivariate fMRI activation patterns and abstract mental states is exploited for a multi-dimensional feedback stimulus via real-time representational similarity analysis (rt-RSA). Here, we assessed the performances of this framework in a multi-subject multi-session study on a 3 T MRI clinical scanner.Approach.Eighteen healthy volunteers underwent two semantic rt-fMRI-NF sessions on two different days. In each session, participants were first requested to engage in specific mental states while local fMRI patterns of brain activity were recorded during stimulated mental imagery of concrete objects (pattern generation). The obtained neural representations were to be replicated and modulated by the participants in subsequent runs of the same session under the guidance of a rt-RSA generated visual feedback (pattern modulation). Performance indicators were derived from the rt-RSA output to assess individual abilities in replicating (and maintaining over time) a target pattern. Simulations were carried out to assess the impact of the geometric distortions implied by the low-dimensional representation of patterns' dissimilarities in the visual feedback.Main results.Sixteen subjects successfully completed both semantic rt-fMRI-NF sessions. Considering some performance indicators, a significant improvement between the first and the second runs, and within run increasing modulation performances were observed, whereas no improvements were found between sessions. Simulations confirmed that in a small percentage of cases visual feedback could be affected by metric distortions due to dimensionality reduction implicit to the rt-RSA approach.Significance.Our results proved the feasibility of the semantic rt-fMRI-NF at 3 T, showing that subjects can successfully modulate and maintain a target mental state when guided by rt-RSA derived feedback. Further development is needed to encourage future clinical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neurorretroalimentación Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neurorretroalimentación Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Italia