Your browser doesn't support javascript.
loading
Multisubject Task-Related fMRI Data Processing via a Two-Stage Generalized Canonical Correlation Analysis.
IEEE Trans Image Process ; 31: 4011-4022, 2022.
Article en En | MEDLINE | ID: mdl-35588408
Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mapeo Encefálico / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: IEEE Trans Image Process Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mapeo Encefálico / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: IEEE Trans Image Process Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos