Your browser doesn't support javascript.
loading
ExplorATE: a new pipeline to explore active transposable elements from RNA-seq data.
Femenias, Martin M; Santos, Juan C; Sites, Jack W; Avila, Luciano J; Morando, Mariana.
Afiliación
  • Femenias MM; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Puerto Madryn, CT U9120ACD, Argentina.
  • Santos JC; Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
  • Sites JW; Department of Biology and M.L. Bean Life Science Museum, Brigham Young University (BYU), Provo, UT 84602, USA.
  • Avila LJ; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Puerto Madryn, CT U9120ACD, Argentina.
  • Morando M; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Puerto Madryn, CT U9120ACD, Argentina.
Bioinformatics ; 38(13): 3361-3366, 2022 06 27.
Article en En | MEDLINE | ID: mdl-35608310
MOTIVATION: Transposable elements (TEs) are ubiquitous in genomes and many remain active. TEs comprise an important fraction of the transcriptomes with potential effects on the host genome, either by generating deleterious mutations or promoting evolutionary novelties. However, their functional study is limited by the difficulty in their identification and quantification, particularly in non-model organisms. RESULTS: We developed a new pipeline [explore active transposable elements (ExplorATE)] implemented in R and bash that allows the quantification of active TEs in both model and non-model organisms. ExplorATE creates TE-specific indexes and uses the Selective Alignment (SA) to filter out co-transcribed transposons within genes based on alignment scores. Moreover, our software incorporates a Wicker-like criteria to refine a set of target TEs and avoid spurious mapping. Based on simulated and real data, we show that the SA strategy adopted by ExplorATE achieved better estimates of non-co-transcribed elements than other available alignment-based or mapping-based software. ExplorATE results showed high congruence with alignment-based tools with and without a reference genome, yet ExplorATE required less execution time. Likewise, ExplorATE expands and complements most previous TE analyses by incorporating the co-transcription and multi-mapping effects during quantification, and provides a seamless integration with other downstream tools within the R environment. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/FemeniasM/ExplorATEproject and https://github.com/FemeniasM/ExplorATE_shell_script. Data available on request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Elementos Transponibles de ADN Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Elementos Transponibles de ADN Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Argentina Pais de publicación: Reino Unido