Your browser doesn't support javascript.
loading
MXene based saturation organic vertical photoelectric transistors with low subthreshold swing.
Li, Enlong; Gao, Changsong; Yu, Rengjian; Wang, Xiumei; He, Lihua; Hu, Yuanyuan; Chen, Huajie; Chen, Huipeng; Guo, Tailiang.
Afiliación
  • Li E; Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
  • Gao C; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
  • Yu R; Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
  • Wang X; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
  • He L; Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
  • Hu Y; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
  • Chen H; Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
  • Chen H; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
  • Guo T; Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
Nat Commun ; 13(1): 2898, 2022 May 24.
Article en En | MEDLINE | ID: mdl-35610215
ABSTRACT
Vertical transistors have attracted enormous attention in the next-generation electronic devices due to their high working frequency, low operation voltage and large current density, while a major scientific and technological challenge for high performance vertical transistor is to find suitable source electrode. Herein, an MXene material, Ti3C2Tx, is introduced as source electrode of organic vertical transistors. The porous MXene films take the advantage of both partially shielding effect of graphene and the direct modulation of the Schottky barrier at the mesh electrode, which significantly enhances the ability of gate modulation and reduces the subthreshold swing to 73 mV/dec. More importantly, the saturation of output current which is essential for all transistor-based applications but remains a great challenge for vertical transistors, is easily achieved in our device due to the ultra-thin thickness and native oxidation of MXene, as verified by finite-element simulations. Finally, our device also possesses great potential for being used as wide-spectrum photodetector with fast response speed without complex material and structure design. This work demonstrates that MXene as source electrode offers plenty of opportunities for high performance vertical transistors and photoelectric devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China