Your browser doesn't support javascript.
loading
Dynamics of Polymer Nanocapsule Buckling and Collapse Revealed by In Situ Liquid-Phase TEM.
Alam, Sardar B; Soligno, Giuseppe; Yang, Jiwoong; Bustillo, Karen C; Ercius, Peter; Zheng, Haimei; Whitelam, Stephen; Chan, Emory M.
Afiliación
  • Alam SB; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Soligno G; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Yang J; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Bustillo KC; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CC, The Netherlands.
  • Ercius P; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Zheng H; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Whitelam S; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Chan EM; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Langmuir ; 38(23): 7168-7178, 2022 Jun 14.
Article en En | MEDLINE | ID: mdl-35621188
ABSTRACT
Nanocapsules are hollow nanoscale shells that have applications in drug delivery, batteries, self-healing materials, and as model systems for naturally occurring shell geometries. In many applications, nanocapsules are designed to release their cargo as they buckle and collapse, but the details of this transient buckling process have not been directly observed. Here, we use in situ liquid-phase transmission electron microscopy to record the electron-irradiation-induced buckling in spherical 60-187 nm polymer capsules with ∼3.5 nm walls. We observe in real time the release of aqueous cargo from these nanocapsules and their buckling into morphologies with single or multiple indentations. The in situ buckling of nanoscale capsules is compared to ex situ measurements of collapsed and micrometer-sized capsules and to Monte Carlo (MC) simulations. The shape and dynamics of the collapsing nanocapsules are consistent with MC simulations, which reveal that the excessive wrinkling of nanocapsules with ultrathin walls results from their large Föppl-von Kármán numbers around 105. Our experiments suggest design rules for nanocapsules with the desired buckling response based on parameters such as capsule radius, wall thickness, and collapse rate.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos