Your browser doesn't support javascript.
loading
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs).
Reddy, V Uttej Nandan; Ramanaiah, S V; Reddy, M Venkateswar; Chang, Young-Cheol.
Afiliación
  • Reddy VUN; Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 522502, Andhra Pradesh, India.
  • Ramanaiah SV; Food and Biotechnology Research Lab, South Ural State University (NRU), 76, Lenin prospekt, Chelyabinsk 454080, Russia.
  • Reddy MV; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
  • Chang YC; Course of Chemical and Biological Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan.
Bioengineering (Basel) ; 9(5)2022 May 21.
Article en En | MEDLINE | ID: mdl-35621503
Synthetic plastics derived from fossil fuels-such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene-are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2022 Tipo del documento: Article País de afiliación: India Pais de publicación: Suiza