Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band.
Micromachines (Basel)
; 13(5)2022 May 18.
Article
en En
| MEDLINE
| ID: mdl-35630253
In this paper, we have designed, analyzed, and characterized a hybrid-type MEMS device for X-band phase shift measurement. The signal related to a phase shift of the inputs is fractionally in-line coupled by a MEMS beam and delivered to a thermoelectric power sensor, where the phase is ultimately converted into DC voltage output. With the hybrid of the MEMS beam and the thermoelectric power sensor, both in-line detection process and phase-DC voltage conversion is reserved, which is a benefit for large power capacity, good linearity property, and high-level integration density. In order to get a deep insight into the physical mechanisms involved in the phase detection process, a comprehensive analysis model is presented. The beam is modeled as a precise RLC circuit component, where the capacitance is related to the input power. The fabrication is compatible with GaAs monolithic microwave integrated circuit (MMIC) technology. Experimental results show that return loss is smaller than -11.3 dB and isolation is better than -9.3 dB over X-band. Phase shift detection from 0 to 180 degrees is verified for a large power range of 200-1600 mW (23-32 dBm). The perfect linearity property of the phase-detection sensitivity is demonstrated in the same power range. Low intermodulation distortion is also confirmed through measurement. It is revealed from the comparison between this work and other published results in the literature that this presented hybrid-type structure shows superiorities in both power handling ability and phase-detection linearity. It can be adopted in medium power signal applications with a high level of integration.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Micromachines (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Suiza