Your browser doesn't support javascript.
loading
Technical note: Low-cost MR-compatible pneumatic respiratory organ motion simulator for the development of MR-guided thermal therapy.
Kim, Kisoo; Jones, Peter; Diederich, Chris; Ozhinsky, Eugene.
Afiliación
  • Kim K; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.
  • Jones P; Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA.
  • Diederich C; Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA.
  • Ozhinsky E; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.
Med Phys ; 49(7): 4365-4371, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35635215
BACKGROUND: In magnetic resonance (MR)-guided thermal therapy, respiratory motion can cause a significant temperature error in MR thermometry and reduce the efficiency of the treatment. A respiratory motion simulator is necessary for the development of new MR imaging (MRI) and motion compensation techniques. PURPOSE: The purpose of this study is to develop a low-cost and simple MR-compatible respiratory motion simulator to support proof-of-concept studies of MR monitoring approaches with respiratory-induced abdominal organ motion. METHODS: The phantom motion system integrates pneumatic control via an actuator subsystem located outside the MRI and coupled via plastic tubing to a compressible bag for distention and retraction within the MRI safe motion subsystem and phantom positioned within the MRI scanner. Performance of the respiratory motion simulator was evaluated with a real-time gradient echo MRI pulse sequence. RESULTS: The motion simulator can produce respiratory rates in the range of 8-16 breaths/min. Our experiments showed the consistent periodic motion of the phantom during MRI acquisition in the range of 3.7-9 mm with 16 breaths/min. The operation of the simulator did not cause interference with MRI acquisition. CONCLUSIONS: In this study, we have demonstrated the ability of the motion simulator to generate controlled respiratory motion of a phantom. The low-cost MR-compatible respiratory motion simulator can be easily constructed from off-the-shelf and 3D-printed parts based on open-source 3D models and instructions. This could lower the barriers to the development of new MRI techniques with motion compensation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Movimientos de los Órganos Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Med Phys Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Movimientos de los Órganos Tipo de estudio: Health_economic_evaluation Idioma: En Revista: Med Phys Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos