Your browser doesn't support javascript.
loading
CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis.
Li, Shuqi; Poulton, Nicholas C; Chang, Jesseon S; Azadian, Zachary A; DeJesus, Michael A; Ruecker, Nadine; Zimmerman, Matthew D; Eckartt, Kathryn A; Bosch, Barbara; Engelhart, Curtis A; Sullivan, Daniel F; Gengenbacher, Martin; Dartois, Véronique A; Schnappinger, Dirk; Rock, Jeremy M.
Afiliación
  • Li S; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Poulton NC; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Chang JS; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Azadian ZA; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • DeJesus MA; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Ruecker N; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
  • Zimmerman MD; Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
  • Eckartt KA; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Bosch B; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
  • Engelhart CA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
  • Sullivan DF; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
  • Gengenbacher M; Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
  • Dartois VA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
  • Schnappinger D; Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
  • Rock JM; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
Nat Microbiol ; 7(6): 766-779, 2022 06.
Article en En | MEDLINE | ID: mdl-35637331
ABSTRACT
Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis / Tuberculosis Resistente a Múltiples Medicamentos / Mycobacterium tuberculosis Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Microbiol Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis / Tuberculosis Resistente a Múltiples Medicamentos / Mycobacterium tuberculosis Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Microbiol Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos