Your browser doesn't support javascript.
loading
Twisting DNA by salt.
Cruz-León, Sergio; Vanderlinden, Willem; Müller, Peter; Forster, Tobias; Staudt, Georgina; Lin, Yi-Yun; Lipfert, Jan; Schwierz, Nadine.
Afiliación
  • Cruz-León S; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
  • Vanderlinden W; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Müller P; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Forster T; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Staudt G; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Lin YY; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Lipfert J; Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
  • Schwierz N; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
Nucleic Acids Res ; 50(10): 5726-5738, 2022 06 10.
Article en En | MEDLINE | ID: mdl-35640616
The structure and properties of DNA depend on the environment, in particular the ion atmosphere. Here, we investigate how DNA twist -one of the central properties of DNA- changes with concentration and identity of the surrounding ions. To resolve how cations influence the twist, we combine single-molecule magnetic tweezer experiments and extensive all-atom molecular dynamics simulations. Two interconnected trends are observed for monovalent alkali and divalent alkaline earth cations. First, DNA twist increases monotonously with increasing concentration for all ions investigated. Second, for a given salt concentration, DNA twist strongly depends on cation identity. At 100 mM concentration, DNA twist increases as Na+ < K+ < Rb+ < Ba2+ < Li+ ≈ Cs+ < Sr2+ < Mg2+ < Ca2+. Our molecular dynamics simulations reveal that preferential binding of the cations to the DNA backbone or the nucleobases has opposing effects on DNA twist and provides the microscopic explanation of the observed ion specificity. However, the simulations also reveal shortcomings of existing force field parameters for Cs+ and Sr2+. The comprehensive view gained from our combined approach provides a foundation for understanding and predicting cation-induced structural changes both in nature and in DNA nanotechnology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Simulación de Dinámica Molecular Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Simulación de Dinámica Molecular Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido