Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization.
ACS Appl Mater Interfaces
; 2022 Jun 01.
Article
en En
| MEDLINE
| ID: mdl-35649248
Inserting complex biomolecules such as oligonucleotides during the synthesis of polymers remains an important challenge in the development of functionalized materials. In order to engineer such a biofunctionalized interface, a single-step method for the covalent immobilization of oligonucleotides (ONs) based on novel electropolymerizable lipid thiophene-oligonucleotide (L-ThON) conjugates was employed. Here, we report a new thiophene phosphoramidite building block for the synthesis of modified L-ThONs. The biofunctionalized material was obtained by direct electropolymerization of L-ThONs in the presence of 2,2'-bithiophene (BTh) to obtain a copolymer film on indium tin oxide electrodes. In situ electroconductance measurements and microstructural studies showed that the L-ThON was incorporated in the BTh copolymer backbone. Furthermore, the covalently immobilized L-ThON sequence showed selectivity in subsequent hybridization processes with a complementary target, demonstrating that L-ThONs can directly be used for manufacturing materials via an electropolymerization strategy. These results indicate that L-ThONs are promising candidates for the development of stable ON-based bioelectrochemical platforms.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Estados Unidos