Your browser doesn't support javascript.
loading
Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics.
Monroy, Silvia; Larrañaga, Aitor; Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Basaguren, Ana; Pozo, Jesús.
Afiliación
  • Monroy S; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain. silvia.monroy@ehu.eus.
  • Larrañaga A; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
  • Martínez A; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
  • Pérez J; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
  • Molinero J; Escuela de Gestión Ambiental, Pontificia Universidad Católica del Ecuador Sede Esmeraldas, Esmeraldas, 080150, Ecuador.
  • Basaguren A; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
  • Pozo J; Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
Microb Ecol ; 85(3): 839-852, 2023 Apr.
Article en En | MEDLINE | ID: mdl-35654854
ABSTRACT
Ongoing global warming is expected to alter temperature-dependent processes. Nevertheless, how co-occurring local drivers will influence temperature sensitivity of plant litter decomposition in lotic ecosystems remains uncertain. Here, we examined the temperature sensitivity of microbial-mediated decomposition, microbial respiration, fungal biomass and leaf nutrients of two plant species varying in litter quality. We also assessed whether the type of microbial community and stream water characteristics influence such responses to temperature. We incubated alder (Alnus glutinosa) and eucalypt (Eucalyptus globulus) litter discs in three streams differing in autumn-winter water temperature (range 4.6-8.9 °C). Simultaneously, in laboratory microcosms, litter discs microbially conditioned in these streams were incubated at 5, 10 and 15 °C with water from the conditioning stream and with a water control from an additional stream. Both in the field and in the laboratory, higher temperatures enhanced litter decomposition rates, except for eucalypt in the field. Leaf quality modified the response of decomposition to temperature in the field, with eucalypt leaf litter showing a lower increase, whereas it did not in the laboratory. The origin of microbial community only affected the decomposition rates in the laboratory, but it did not modify the response to temperature. Water quality only defined the phosphorus content of the leaf litter or the fungal biomass, but it did not modify the response to temperature. Our results suggest that the acceleration in decomposition by global warming will be shaped by local factors, mainly by leaf litter quality, in headwater streams.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ecosistema / Alnus Tipo de estudio: Diagnostic_studies Idioma: En Revista: Microb Ecol Año: 2023 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ecosistema / Alnus Tipo de estudio: Diagnostic_studies Idioma: En Revista: Microb Ecol Año: 2023 Tipo del documento: Article País de afiliación: España