Your browser doesn't support javascript.
loading
Automatic head computed tomography image noise quantification with deep learning.
Inkinen, Satu I; Mäkelä, Teemu; Kaasalainen, Touko; Peltonen, Juha; Kangasniemi, Marko; Kortesniemi, Mika.
Afiliación
  • Inkinen SI; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland. Electronic address: satu.inkinen@hus.fi.
  • Mäkelä T; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
  • Kaasalainen T; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
  • Peltonen J; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
  • Kangasniemi M; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
  • Kortesniemi M; HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
Phys Med ; 99: 102-112, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35671678
PURPOSE: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation. METHODS: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (Ntrain = 37, Ntest = 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment. RESULTS: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions. CONCLUSIONS: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Límite: Humans Idioma: En Revista: Phys Med Asunto de la revista: BIOFISICA / BIOLOGIA / MEDICINA Año: 2022 Tipo del documento: Article Pais de publicación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Límite: Humans Idioma: En Revista: Phys Med Asunto de la revista: BIOFISICA / BIOLOGIA / MEDICINA Año: 2022 Tipo del documento: Article Pais de publicación: Italia