Your browser doesn't support javascript.
loading
Emergent and Tunable Topological Surface States in Complementary Sb/Bi2Te3 and Bi2Te3/Sb Thin-Film Heterostructures.
Li, Yao; Bowers, John W; Hlevyack, Joseph A; Lin, Meng-Kai; Chiang, Tai-Chang.
Afiliación
  • Li Y; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Bowers JW; Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Hlevyack JA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Lin MK; Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Chiang TC; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
ACS Nano ; 16(6): 9953-9959, 2022 Jun 28.
Article en En | MEDLINE | ID: mdl-35699943
Epitaxial thin-film heterostructures offer a versatile platform for realizing topological surface states (TSSs) that may be emergent and/or tunable by tailoring the atomic layering in the heterostructures. Here, as an experimental demonstration, Sb and Bi2Te3 thin films with closely matched in-plane lattice constants are chosen to form two complementary heterostructures: Sb overlayers on Bi2Te3 (Sb/Bi2Te3) and Bi2Te3 overlayers on Sb (Bi2Te3/Sb), with the overlayer thickness as a tuning parameter. In the bulk form, Sb (a semimetal) and Bi2Te3 (an insulator) both host TSSs with the same topological order but substantially different decay lengths and dispersions, whereas ultrathin Sb and Bi2Te3 films by themselves are fully gapped trivial insulators. Angle-resolved photoemission band mappings, aided by theoretical calculations, confirm the formation of emergent TSSs in both heterostructures. The energy position of the topological Dirac point varies as a function of overlayer thickness, but the variation is non-monotonic, indicating nontrivial effects in the formation of topological heterostructure systems. The results illustrate the rich physics of engineered composite topological systems that may be exploited for nanoscale spintronics applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos