Your browser doesn't support javascript.
loading
Association of inflammation and lung function decline caused by personal PM2.5 exposure: a machine learning approach in time-series data.
Yu, Hao; Xu, Tian; Chen, Juan; Yin, Wenjun; Ye, Fang.
Afiliación
  • Yu H; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, Guangdong, People's Republic of China.
  • Xu T; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Inc
  • Chen J; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Inc
  • Yin W; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Inc
  • Ye F; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan), and State Key Laboratory of Environment Health (Inc
Environ Sci Pollut Res Int ; 29(53): 80436-80447, 2022 Nov.
Article en En | MEDLINE | ID: mdl-35716299
ABSTRACT
Numerous studies focused on the association between lung function impairment and inflammation caused by fine particulate matter (PM2.5), but the causal relationships are difficult to clarify. In the current study, twenty healthy Chinese young adults who participated in 7 days of observation every four seasons were enrolled, and autoregression models (AM) and classification and regression trees (CART) in a machine learning framework were applied to analyze the association among PM2.5 exposure, inflammation, and lung function from a data structure perspective. There were strong cross-correlations between personal dose of PM2.5 (Dw) and lung functions (vital capacity (VC), forced vital capacity (FVC), etc.). These cross-correlation coefficients were associated with inflammatory indicators (uteroglobin (UG), serum amyloid (SAA), and fractional exhaled nitric oxide (FeNO)). CART reported that inflammatory indicators UG and SAA had the predictive ability of the directional association between Dw and FVC at 1-day lag and that high levels of UG and SAA predicted that PM2.5 exposure induced lung function decline. Consistently, lower lung function indicators at a 2-day lag after personal PM2.5 exposure predicted the high value of inflammatory indicator FeNO. Taken together, we applied machine learning algorithms to analyze repeated measurement data, finding that inflammation and lung function decline caused by PM2.5 could affect each other.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Humans Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Humans Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2022 Tipo del documento: Article