Your browser doesn't support javascript.
loading
Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett's esophagus.
Faghani, Shahriar; Codipilly, D Chamil; Moassefi, Mana; Rouzrokh, Pouria; Khosravi, Bardia; Agarwal, Siddharth; Dhaliwal, Lovekirat; Katzka, David A; Hagen, Catherine; Lewis, Jason; Leggett, Cadman L; Erickson, Bradley J; Iyer, Prasad G.
Afiliación
  • Faghani S; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Codipilly DC; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • David Vogelsang; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Moassefi M; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Rouzrokh P; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Khosravi B; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Agarwal S; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Dhaliwal L; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Katzka DA; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Hagen C; Department of Pathology, Mayo Clinic, Rochester, Minnesota, USA; (5)Department of Pathology, Mayo Clinic, Jacksonville, Florida, USA.
  • Lewis J; Department of Pathology, Mayo Clinic, Jacksonville, Florida, USA.
  • Leggett CL; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Erickson BJ; Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Iyer PG; Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
Gastrointest Endosc ; 96(6): 918-925.e3, 2022 12.
Article en En | MEDLINE | ID: mdl-35718071
BACKGROUND AND AIMS: The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We developed a deep learning model to predict dysplasia grade on whole-slide imaging. METHODS: We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic performance was determined for the whole slide. RESULTS: We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD. CONCLUSIONS: We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esófago de Barrett / Neoplasias Esofágicas / Adenocarcinoma / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Gastrointest Endosc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esófago de Barrett / Neoplasias Esofágicas / Adenocarcinoma / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Gastrointest Endosc Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos