Your browser doesn't support javascript.
loading
An Unsupervised Transfer Learning Framework for Visible-Thermal Pedestrian Detection.
Lyu, Chengjin; Heyer, Patrick; Goossens, Bart; Philips, Wilfried.
Afiliación
  • Lyu C; TELIN-IPI, Ghent University-imec, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
  • Heyer P; TELIN-IPI, Ghent University-imec, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
  • Goossens B; TELIN-IPI, Ghent University-imec, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
  • Philips W; TELIN-IPI, Ghent University-imec, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article en En | MEDLINE | ID: mdl-35746199
Dual cameras with visible-thermal multispectral pairs provide both visual and thermal appearance, thereby enabling detecting pedestrians around the clock in various conditions and applications, including autonomous driving and intelligent transportation systems. However, due to the greatly varying real-world scenarios, the performance of a detector trained on a source dataset might change dramatically when evaluated on another dataset. A large amount of training data is often necessary to guarantee the detection performance in a new scenario. Typically, human annotators need to conduct the data labeling work, which is time-consuming, labor-intensive and unscalable. To overcome the problem, we propose a novel unsupervised transfer learning framework for multispectral pedestrian detection, which adapts a multispectral pedestrian detector to the target domain based on pseudo training labels. In particular, auxiliary detectors are utilized and different label fusion strategies are introduced according to the estimated environmental illumination level. Intermediate domain images are generated by translating the source images to mimic the target ones, acting as a better starting point for the parameter update of the pedestrian detector. The experimental results on the KAIST and FLIR ADAS datasets demonstrate that the proposed method achieves new state-of-the-art performance without any manual training annotations on the target data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducción de Automóvil / Peatones Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducción de Automóvil / Peatones Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza