Your browser doesn't support javascript.
loading
Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions.
Guo, Xin; Wang, Ping; Wang, Xinjie; Li, Yaoming; Ji, Baoming.
Afiliación
  • Guo X; School of Grassland Science, Beijing Forestry University, Beijing, China.
  • Wang P; Command Center for Integrated Natural Resource Survey, China Geological Survey, Beijing, China.
  • Wang X; College of Forestry, Beijing Forestry University, Beijing, China.
  • Li Y; School of Grassland Science, Beijing Forestry University, Beijing, China.
  • Ji B; School of Grassland Science, Beijing Forestry University, Beijing, China.
Front Plant Sci ; 13: 930069, 2022.
Article en En | MEDLINE | ID: mdl-35755699
Effects of arbuscular mycorrhizal fungi (AMF) on plants span the continuum from mutualism to parasitism due to the plant-AMF specificity, which obscures the utilization of AMF in the restoration of degraded lands. Caragana korshinskii, Hedysarum laeve, Caragana microphylla, and Poa annua are the most frequently used plants for revegetation in Kubuqi Desert, China, and the influence of AMF on their re-establishment remains to be explored further. Herein, using a greenhouse experiment, we tested the plant-AMF feedbacks between the four plant species and their conspecific or heterospecific AMF, retrieved from their rhizosphere in the Kubuqi Desert. AMF showed beneficial effects on plant growth for all these plant-AMF pairs. Generally, AMF increased the biomass of C. korshinskii, H. laeve, C. microphylla, and P. annua by 97.6, 50.6, 46.5, and 381.1%, respectively, relative to control. In addition, the AMF-plant specificity was detected. P. annua grew best, but C. microphylla grew worst with conspecific AMF communities. AMF community from P. annua showed the largest beneficial effect on all the plants (with biomass increased by 63.9-734.4%), while the AMF community from C. microphylla showed the least beneficial effect on all the plants (with biomass increased by 9.9-59.1%), except for P. annua (a 292.4% increase in biomass). The magnitude of AMF effects on plant growth was negatively correlated with the complexity of the corresponding AMF co-occurrence networks. Overall, this study suggests that AMF effects on plant growth vary due to plant-AMF specificity. We also observed the broad-spectrum benefits of the native AMF from P. annua, which indicates its potential utilization in the restoration of the desert vegetation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza