Your browser doesn't support javascript.
loading
Profiling of Urine Carbonyl Metabolic Fingerprints in Bladder Cancer Based on Ambient Ionization Mass Spectrometry.
Li, Yuze; Jiang, Lixia; Wang, Zhenpeng; Wang, Yiran; Cao, Xiaohua; Meng, Lingwei; Fan, Jinghan; Xiong, Caiqiao; Nie, Zongxiu.
Afiliación
  • Li Y; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Jiang L; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang Z; Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
  • Wang Y; National Center for Mass Spectrometry in Beijing, Beijing 100190, China.
  • Cao X; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Meng L; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Fan J; College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China.
  • Xiong C; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Nie Z; University of Chinese Academy of Sciences, Beijing 100049, China.
Anal Chem ; 94(27): 9894-9902, 2022 07 12.
Article en En | MEDLINE | ID: mdl-35762528
The diagnosis of bladder cancer (BC) is currently based on cystoscopy, which is invasive and expensive. Here, we describe a noninvasive profiling method for carbonyl metabolic fingerprints in BC, which is based on a desorption, separation, and ionization mass spectrometry (DSI-MS) platform with N,N-dimethylethylenediamine (DMED) as a differential labeling reagent. The DSI-MS platform avoids the interferences from intra- and/or intersamples. Additionally, the DMED derivatization increases detection sensitivity and distinguishes carboxyl, aldehyde, and ketone groups in untreated urine samples. Carbonyl metabolic fingerprints of urine from 41 BC patients and 41 controls were portrayed and 9 potential biomarkers were identified. The mechanisms of the regulations of these biomarkers have been tentatively discussed. A logistic regression (LR) machine learning algorithm was applied to discriminate BC from controls, and an accuracy of 85% was achieved. We believe that the method proposed here may pave the way toward the point-of-care diagnosis of BC in a patient-friendly manner.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Anal Chem Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos