Biocatalytic quantification of α-glucan in marine particulate organic matter.
Microbiologyopen
; 11(3): e1289, 2022 06.
Article
en En
| MEDLINE
| ID: mdl-35765187
Marine algae drive the marine carbon cycle, converting carbon dioxide into organic material. A major component of this produced biomass is a variety of glycans. Marine α-glucans include a range of storage glycans from red and green algae, bacteria, fungi, and animals. Although these compounds are likely to account for a high amount of the carbon stored in the oceans they have not been quantified in marine samples so far. Here we present a method to extract and quantify α-glucans (and compare it with the ß-glucan laminarin) in particulate organic matter from algal cultures and environmental samples using sequential physicochemical extraction and enzymes as α-glucan-specific probes. This enzymatic assay is more specific and less susceptible to side reactions than chemical hydrolysis. Using HPAEC-PAD to detect the hydrolysis products allows for a glycan quantification in particulate marine samples down to a concentration of ≈2 µg/L. We measured glucans in three cultured microalgae as well as in marine particulate organic matter from the North Sea and western North Atlantic Ocean. While the ß-glucan laminarin from diatoms and brown algae is an essential component of marine carbon turnover, our results further indicate the significant contribution of starch-like α-glucans to marine particulate organic matter. Henceforth, the combination of glycan-linkage-specific enzymes and chromatographic hydrolysis product detection can provide a powerful tool in the exploration of marine glycans and their role in the global carbon cycle.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Beta-Glucanos
/
Material Particulado
Límite:
Animals
Idioma:
En
Revista:
Microbiologyopen
Año:
2022
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido