Your browser doesn't support javascript.
loading
Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies.
Xie, Chao; Habif, Julien C; Ukhanov, Kirill; Uytingco, Cedric R; Zhang, Lian; Campbell, Robert J; Martens, Jeffrey R.
Afiliación
  • Xie C; Department of Pharmacology and Therapeutics and.
  • Habif JC; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, Florida, USA.
  • Ukhanov K; Department of Pharmacology and Therapeutics and.
  • Uytingco CR; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, Florida, USA.
  • Zhang L; Department of Pharmacology and Therapeutics and.
  • Campbell RJ; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, Florida, USA.
  • Martens JR; Department of Pharmacology and Therapeutics and.
JCI Insight ; 7(15)2022 08 08.
Article en En | MEDLINE | ID: mdl-35771640
ABSTRACT
Ciliopathies are a class of genetic diseases resulting in cilia dysfunction in multiple organ systems, including the olfactory system. Currently, there are no available curative treatments for olfactory dysfunction and other symptoms in ciliopathies. The loss or shortening of olfactory cilia, as seen in multiple mouse models of the ciliopathy Bardet-Biedl syndrome (BBS), results in olfactory dysfunction. However, the underlying mechanism of the olfactory cilia reduction is unknown, thus limiting the development of therapeutic approaches for BBS and other ciliopathies. Here, we demonstrated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phosphoinositide typically excluded from olfactory cilia, aberrantly redistributed into the residual cilia of BBS mouse models, which caused F-actin ciliary infiltration. Importantly, PI(4,5)P2 and F-actin were necessary for olfactory cilia shortening. Using a gene therapeutic approach, the hydrolyzation of PI(4,5)P2 by overexpression of inositol polyphosphate-5-phosphatase E (INPP5E) restored cilia length and rescued odor detection and odor perception in BBS. Together, our data indicate that PI(4,5)P2/F-actin-dependent cilia disassembly is a common mechanism contributing to the loss of olfactory cilia in BBS and provide valuable pan-therapeutic intervention targets for the treatment of ciliopathies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Síndrome de Bardet-Biedl / Ciliopatías / Trastornos del Olfato Límite: Animals Idioma: En Revista: JCI Insight Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Síndrome de Bardet-Biedl / Ciliopatías / Trastornos del Olfato Límite: Animals Idioma: En Revista: JCI Insight Año: 2022 Tipo del documento: Article