Your browser doesn't support javascript.
loading
Comparing high versus low-altitude populations to test human adaptations for increased ventilation during sustained aerobic activity.
Callison, W Éamon; Kiyamu, Melisa; Villafuerte, Francisco C; Brutsaert, Tom D; Lieberman, Daniel E.
Afiliación
  • Callison WÉ; Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
  • Kiyamu M; Laboratorio de Fisiología del Transporte de Oxigeno, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Villafuerte FC; Laboratorio de Fisiología del Transporte de Oxigeno, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Brutsaert TD; Department of Exercise Science, Syracuse University, Syracuse, New York, USA.
  • Lieberman DE; Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA. danlieb@fas.harvard.edu.
Sci Rep ; 12(1): 11148, 2022 07 01.
Article en En | MEDLINE | ID: mdl-35778402
ABSTRACT
Despite aerobic activity requiring up to tenfold increases in air intake, human populations in high-altitude hypoxic environments can sustain high levels of endurance physical activity. While these populations generally have relatively larger chest and lung volumes, how thoracic motions actively increase ventilation is unknown. Here we show that rib movements, in conjunction with chest shape, contribute to ventilation by assessing how adulthood acclimatization, developmental adaptation, and population-level adaptation to high-altitude affect sustained aerobic activity. We measured tidal volume, heart rate, and rib-motion during walking and running in lowland individuals from Boston (~ 35 m) and in Quechua populations born and living at sea-level (~ 150 m) and at high altitude (> 4000 m) in Peru. We found that Quechua participants, regardless of birth or testing altitudes, increase thoracic volume 2.0-2.2 times more than lowland participants (p < 0.05). Further, Quechua individuals from hypoxic environments have deeper chests resulting in 1.3 times greater increases in thoracic ventilation compared to age-matched, sea-level Quechua (p < 0.05). Thus, increased thoracic ventilation derives from a combination of acclimatization, developmental adaptation, and population-level adaptation to aerobic demand in different oxygen environments, demonstrating that ventilatory demand due to environment and activity has helped shape the form and function of the human thorax.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Altitud / Aclimatación Límite: Adult / Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Altitud / Aclimatación Límite: Adult / Humans Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...