Your browser doesn't support javascript.
loading
Assessing small-mammal trapping design using spatially explicit capture recapture (SECR) modeling on long-term monitoring data.
Freeman, Chase M; Barthman-Thompson, Laureen; Klinger, Robert; Woo, Isa; Thorne, Karen M.
Afiliación
  • Freeman CM; U.S. Geological Survey, Western Ecological Research Center, Davis, CA, United States of America.
  • Barthman-Thompson L; California Department of Fish and Wildlife, Stockton, CA, United States of America.
  • Klinger R; U.S. Geological Survey, Western Ecological Research Center, Sacramento, CA, United States of America.
  • Woo I; U.S. Geological Survey, Western Ecological Research Center, Moffett Field, CA, United States of America.
  • Thorne KM; U.S. Geological Survey, Western Ecological Research Center, Davis, CA, United States of America.
PLoS One ; 17(7): e0270082, 2022.
Article en En | MEDLINE | ID: mdl-35788575
Few studies have evaluated the optimal sampling design for tracking small mammal population trends, especially for rare or difficult to detect species. Spatially explicit capture-recapture (SECR) models present an advancement over non-spatial models by accounting for individual movement when estimating density. The salt marsh harvest mouse (SMHM; Reithrodontomys raviventris) is a federal and California state listed endangered species endemic to the San Francisco Bay-Delta estuary, California, USA; where a population in a subembayment has been continually monitored over an 18-year period using mark-recapture methods. We analyzed capture data within a SECR modeling framework that allowed us to account for differences in detection and movement between sexes. We compared the full dataset to subsampling scenarios to evaluate how the grid size (area) of the trap design, trap density (spacing), and number of consecutive trapping occasions (duration) influenced density estimates. To validate the subsampling methods, we ran Monte Carlo simulations based on the true parameter estimates for each specific year. We found that reducing the area of the trapping design by more than 36% resulted in the inability of the SECR model to replicate density estimates within the SE of the original density estimates. However, when trapping occasions were reduced from 4 to 3-nights the density estimates were indistinguishable from the full dataset. Furthermore, reducing trap density by 50% also resulted in density estimates comparable to the full dataset and was a substantially better model than reducing the trap area by 50%. Overall, our results indicated that moderate reductions in the number of trapping occasions or trap density could yield similar density estimates when using a SECR approach. This approach allows the optimization of field trapping efforts and designs by reducing field efforts while maintaining the same population estimate compared to the full dataset. Using a SECR approach may help other wildlife programs identify sampling efficiencies without sacrificing data integrity for long term monitoring of population densities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mamíferos Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mamíferos Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos